direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C32⋊F5, (C3×C6)⋊F5, (C3×C30)⋊1C4, C3⋊D15⋊4C4, C10⋊(C32⋊C4), C32⋊4(C2×F5), C3⋊D15.2C22, C5⋊2(C2×C32⋊C4), (C3×C15)⋊7(C2×C4), (C2×C3⋊D15).1C2, SmallGroup(360,150)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C3×C15 — C3⋊D15 — C32⋊F5 — C2×C32⋊F5 |
C3×C15 — C2×C32⋊F5 |
Generators and relations for C2×C32⋊F5
G = < a,b,c,d,e | a2=b3=c3=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, ece-1=bc=cb, bd=db, ebe-1=b-1c, cd=dc, ede-1=d3 >
Character table of C2×C32⋊F5
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 5 | 6A | 6B | 10 | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 30A | 30B | 30C | 30D | 30E | 30F | 30G | 30H | |
size | 1 | 1 | 45 | 45 | 4 | 4 | 45 | 45 | 45 | 45 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 4 | -2 | 1 | 4 | 1 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ10 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | 4 | 4 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ11 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | -2 | 4 | -2 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | -1 | -4 | -4 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ13 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 4 | 2 | -1 | -4 | 1 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ14 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | -1 | 2 | -4 | -2 | 1 | 1 | 1 | 1 | -2 | -2 | -2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | orthogonal faithful |
ρ16 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | orthogonal lifted from C32⋊F5 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | orthogonal lifted from C32⋊F5 |
ρ18 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | orthogonal faithful |
ρ19 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | orthogonal faithful |
ρ20 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | orthogonal faithful |
ρ22 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | orthogonal lifted from C32⋊F5 |
ρ23 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | -1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | orthogonal lifted from C32⋊F5 |
ρ24 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | orthogonal faithful |
ρ26 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | -1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | orthogonal lifted from C32⋊F5 |
ρ27 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | -ζ3ζ54+ζ3ζ5+ζ54+2ζ5+1 | -ζ32ζ54+ζ32ζ5+ζ54+2ζ5+1 | -ζ3ζ53+ζ3ζ52+ζ53+2ζ52+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5 | ζ3ζ53-ζ3ζ52+2ζ53+ζ52+1 | orthogonal faithful |
ρ28 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | -1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | orthogonal lifted from C32⋊F5 |
ρ29 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | -1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | orthogonal lifted from C32⋊F5 |
ρ30 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | -1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ32ζ54-ζ32ζ5-ζ54-2ζ5-1 | ζ3ζ54-ζ3ζ5-ζ54-2ζ5-1 | -ζ3ζ53+ζ3ζ52-2ζ53-ζ52-1 | 2ζ3ζ54+2ζ3ζ52+ζ3+ζ54+ζ52+1 | 2ζ3ζ53+2ζ3ζ5+ζ3+ζ53+ζ5+1 | 2ζ32ζ52+2ζ32ζ5+ζ32+ζ52+ζ5+1 | 2ζ3ζ52+2ζ3ζ5+ζ3+ζ52+ζ5+1 | ζ3ζ53-ζ3ζ52-ζ53-2ζ52-1 | orthogonal lifted from C32⋊F5 |
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 47)(2 49 5 50)(3 46 4 48)(6 56 12 53)(7 58 11 51)(8 60 15 54)(9 57 14 52)(10 59 13 55)(16 31 17 33)(18 35 20 34)(19 32)(21 41 27 38)(22 43 26 36)(23 45 30 39)(24 42 29 37)(25 44 28 40)
G:=sub<Sym(60)| (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,47)(2,49,5,50)(3,46,4,48)(6,56,12,53)(7,58,11,51)(8,60,15,54)(9,57,14,52)(10,59,13,55)(16,31,17,33)(18,35,20,34)(19,32)(21,41,27,38)(22,43,26,36)(23,45,30,39)(24,42,29,37)(25,44,28,40)>;
G:=Group( (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,47)(2,49,5,50)(3,46,4,48)(6,56,12,53)(7,58,11,51)(8,60,15,54)(9,57,14,52)(10,59,13,55)(16,31,17,33)(18,35,20,34)(19,32)(21,41,27,38)(22,43,26,36)(23,45,30,39)(24,42,29,37)(25,44,28,40) );
G=PermutationGroup([[(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,47),(2,49,5,50),(3,46,4,48),(6,56,12,53),(7,58,11,51),(8,60,15,54),(9,57,14,52),(10,59,13,55),(16,31,17,33),(18,35,20,34),(19,32),(21,41,27,38),(22,43,26,36),(23,45,30,39),(24,42,29,37),(25,44,28,40)]])
Matrix representation of C2×C32⋊F5 ►in GL5(𝔽61)
60 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 36 | 16 |
0 | 0 | 0 | 12 | 24 |
1 | 0 | 0 | 0 | 0 |
0 | 24 | 45 | 0 | 0 |
0 | 49 | 36 | 0 | 0 |
0 | 0 | 0 | 36 | 16 |
0 | 0 | 0 | 12 | 24 |
1 | 0 | 0 | 0 | 0 |
0 | 60 | 1 | 0 | 0 |
0 | 16 | 44 | 0 | 0 |
0 | 0 | 0 | 17 | 43 |
0 | 0 | 0 | 17 | 0 |
11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 17 | 1 | 0 | 0 |
0 | 17 | 44 | 0 | 0 |
G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,36,12,0,0,0,16,24],[1,0,0,0,0,0,24,49,0,0,0,45,36,0,0,0,0,0,36,12,0,0,0,16,24],[1,0,0,0,0,0,60,16,0,0,0,1,44,0,0,0,0,0,17,17,0,0,0,43,0],[11,0,0,0,0,0,0,0,17,17,0,0,0,1,44,0,1,0,0,0,0,0,1,0,0] >;
C2×C32⋊F5 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes F_5
% in TeX
G:=Group("C2xC3^2:F5");
// GroupNames label
G:=SmallGroup(360,150);
// by ID
G=gap.SmallGroup(360,150);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-5,24,1347,111,1924,376,5189,2609]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*c*e^-1=b*c=c*b,b*d=d*b,e*b*e^-1=b^-1*c,c*d=d*c,e*d*e^-1=d^3>;
// generators/relations
Export
Subgroup lattice of C2×C32⋊F5 in TeX
Character table of C2×C32⋊F5 in TeX