Copied to
clipboard

G = C2×C32⋊F5order 360 = 23·32·5

Direct product of C2 and C32⋊F5

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C32⋊F5, (C3×C6)⋊F5, (C3×C30)⋊1C4, C3⋊D154C4, C10⋊(C32⋊C4), C324(C2×F5), C3⋊D15.2C22, C52(C2×C32⋊C4), (C3×C15)⋊7(C2×C4), (C2×C3⋊D15).1C2, SmallGroup(360,150)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C2×C32⋊F5
C1C5C3×C15C3⋊D15C32⋊F5 — C2×C32⋊F5
C3×C15 — C2×C32⋊F5
C1C2

Generators and relations for C2×C32⋊F5
 G = < a,b,c,d,e | a2=b3=c3=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, ece-1=bc=cb, bd=db, ebe-1=b-1c, cd=dc, ede-1=d3 >

45C2
45C2
2C3
2C3
45C4
45C22
45C4
2C6
2C6
30S3
30S3
30S3
30S3
9D5
9D5
2C15
2C15
45C2×C4
30D6
30D6
5C3⋊S3
5C3⋊S3
9D10
9F5
9F5
2C30
2C30
6D15
6D15
6D15
6D15
5C32⋊C4
5C2×C3⋊S3
5C32⋊C4
9C2×F5
6D30
6D30
5C2×C32⋊C4

Character table of C2×C32⋊F5

 class 12A2B2C3A3B4A4B4C4D56A6B1015A15B15C15D15E15F15G15H30A30B30C30D30E30F30G30H
 size 114545444545454544444444444444444444
ρ1111111111111111111111111111111    trivial
ρ21-1-11111-11-11-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ3111111-1-1-1-111111111111111111111    linear of order 2
ρ41-1-1111-11-111-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ511-1-111-i-iii11111111111111111111    linear of order 4
ρ61-11-111-iii-i1-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 4
ρ711-1-111ii-i-i11111111111111111111    linear of order 4
ρ81-11-111i-i-ii1-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 4
ρ944001-200004-2141-2-2-2-2111111-2-2-2-21    orthogonal lifted from C32⋊C4
ρ104400440000-144-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ114400-21000041-24-21111-2-2-2-2-2-21111-2    orthogonal lifted from C32⋊C4
ρ124-400440000-1-4-41-1-1-1-1-1-1-1-111111111    orthogonal lifted from C2×F5
ρ134-4001-2000042-1-41-2-2-2-2111-1-1-12222-1    orthogonal lifted from C2×C32⋊C4
ρ144-400-2100004-12-4-21111-2-2-2222-1-1-1-12    orthogonal lifted from C2×C32⋊C4
ρ154-400-210000-1-1213ζ53+2ζ3ζ53535+1ζ32ζ5432ζ554-2ζ5-13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-1ζ3ζ543ζ554-2ζ5-132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ535353ζ54+2ζ3ζ52354523ζ52+2ζ3ζ53525ζ3ζ533ζ52+2ζ5352+13ζ533ζ5253+2ζ52+13ζ543ζ554+2ζ5+132ζ5432ζ554+2ζ5+132ζ52+2ζ32ζ532525    orthogonal faithful
ρ164400-210000-11-2-13ζ53+2ζ3ζ53535+1ζ32ζ5432ζ554-2ζ5-13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-1ζ3ζ543ζ554-2ζ5-132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+13ζ54+2ζ3ζ5235452+13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+132ζ52+2ζ32ζ532525+13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-13ζ52+2ζ3ζ53525+1    orthogonal lifted from C32⋊F5
ρ174400-210000-11-2-132ζ52+2ζ32ζ532525+1ζ3ζ533ζ5253-2ζ52-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-13ζ533ζ52-2ζ5352-13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+13ζ52+2ζ3ζ53525+13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ54+2ζ3ζ5235452+1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-13ζ53+2ζ3ζ53535+1    orthogonal lifted from C32⋊F5
ρ184-4001-20000-12-11ζ3ζ533ζ5253-2ζ52-13ζ54+2ζ3ζ5235452+132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+13ζ53+2ζ3ζ53535+1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-13ζ533ζ52-2ζ5352-1ζ3ζ533ζ52+2ζ5352+13ζ533ζ5253+2ζ52+13ζ543ζ554+2ζ5+13ζ52+2ζ3ζ5352532ζ52+2ζ32ζ5325253ζ54+2ζ3ζ52354523ζ53+2ζ3ζ5353532ζ5432ζ554+2ζ5+1    orthogonal faithful
ρ194-400-210000-1-12132ζ52+2ζ32ζ532525+1ζ3ζ533ζ5253-2ζ52-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-13ζ533ζ52-2ζ5352-13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ5325253ζ52+2ζ3ζ535253ζ53+2ζ3ζ5353532ζ5432ζ554+2ζ5+13ζ543ζ554+2ζ5+1ζ3ζ533ζ52+2ζ5352+13ζ533ζ5253+2ζ52+13ζ54+2ζ3ζ5235452    orthogonal faithful
ρ204-400-210000-1-1213ζ54+2ζ3ζ5235452+1ζ3ζ543ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-1ζ32ζ5432ζ554-2ζ5-13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ52354523ζ53+2ζ3ζ5353532ζ52+2ζ32ζ5325253ζ533ζ5253+2ζ52+1ζ3ζ533ζ52+2ζ5352+132ζ5432ζ554+2ζ5+13ζ543ζ554+2ζ5+13ζ52+2ζ3ζ53525    orthogonal faithful
ρ214-4001-20000-12-113ζ533ζ52-2ζ5352-13ζ53+2ζ3ζ53535+13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ54+2ζ3ζ5235452+1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ533ζ5253+2ζ52+1ζ3ζ533ζ52+2ζ5352+132ζ5432ζ554+2ζ5+132ζ52+2ζ32ζ5325253ζ52+2ζ3ζ535253ζ53+2ζ3ζ535353ζ54+2ζ3ζ52354523ζ543ζ554+2ζ5+1    orthogonal faithful
ρ224400-210000-11-2-13ζ52+2ζ3ζ53525+13ζ533ζ52-2ζ5352-1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+132ζ52+2ζ32ζ532525+132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+13ζ53+2ζ3ζ53535+1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-13ζ54+2ζ3ζ5235452+1    orthogonal lifted from C32⋊F5
ρ2344001-20000-1-21-1ζ3ζ533ζ5253-2ζ52-13ζ54+2ζ3ζ5235452+132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+13ζ53+2ζ3ζ53535+1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-13ζ533ζ52-2ζ5352-13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-1ζ3ζ543ζ554-2ζ5-132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+1ζ32ζ5432ζ554-2ζ5-1    orthogonal lifted from C32⋊F5
ρ244-400-210000-1-1213ζ52+2ζ3ζ53525+13ζ533ζ52-2ζ5352-1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ5352532ζ52+2ζ32ζ5325253ζ54+2ζ3ζ52354523ζ543ζ554+2ζ5+132ζ5432ζ554+2ζ5+13ζ533ζ5253+2ζ52+1ζ3ζ533ζ52+2ζ5352+13ζ53+2ζ3ζ53535    orthogonal faithful
ρ254-4001-20000-12-11ζ3ζ543ζ554-2ζ5-13ζ52+2ζ3ζ53525+13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+132ζ52+2ζ32ζ532525+13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-1ζ32ζ5432ζ554-2ζ5-132ζ5432ζ554+2ζ5+13ζ543ζ554+2ζ5+1ζ3ζ533ζ52+2ζ5352+13ζ53+2ζ3ζ535353ζ54+2ζ3ζ52354523ζ52+2ζ3ζ5352532ζ52+2ζ32ζ5325253ζ533ζ5253+2ζ52+1    orthogonal faithful
ρ264400-210000-11-2-13ζ54+2ζ3ζ5235452+1ζ3ζ543ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-1ζ32ζ5432ζ554-2ζ5-13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ53+2ζ3ζ53535+13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+13ζ52+2ζ3ζ53525+1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-132ζ52+2ζ32ζ532525+1    orthogonal lifted from C32⋊F5
ρ274-4001-20000-12-11ζ32ζ5432ζ554-2ζ5-132ζ52+2ζ32ζ532525+13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+13ζ52+2ζ3ζ53525+1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-1ζ3ζ543ζ554-2ζ5-13ζ543ζ554+2ζ5+132ζ5432ζ554+2ζ5+13ζ533ζ5253+2ζ52+13ζ54+2ζ3ζ52354523ζ53+2ζ3ζ5353532ζ52+2ζ32ζ5325253ζ52+2ζ3ζ53525ζ3ζ533ζ52+2ζ5352+1    orthogonal faithful
ρ2844001-20000-1-21-13ζ533ζ52-2ζ5352-13ζ53+2ζ3ζ53535+13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ54+2ζ3ζ5235452+1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-1ζ32ζ5432ζ554-2ζ5-13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+1ζ3ζ543ζ554-2ζ5-1    orthogonal lifted from C32⋊F5
ρ2944001-20000-1-21-1ζ32ζ5432ζ554-2ζ5-132ζ52+2ζ32ζ532525+13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+13ζ52+2ζ3ζ53525+1ζ3ζ533ζ5253-2ζ52-13ζ533ζ52-2ζ5352-1ζ3ζ543ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ533ζ5253-2ζ52-13ζ53+2ζ3ζ53535+13ζ54+2ζ3ζ5235452+13ζ52+2ζ3ζ53525+132ζ52+2ζ32ζ532525+13ζ533ζ52-2ζ5352-1    orthogonal lifted from C32⋊F5
ρ3044001-20000-1-21-1ζ3ζ543ζ554-2ζ5-13ζ52+2ζ3ζ53525+13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+132ζ52+2ζ32ζ532525+13ζ533ζ52-2ζ5352-1ζ3ζ533ζ5253-2ζ52-1ζ32ζ5432ζ554-2ζ5-1ζ32ζ5432ζ554-2ζ5-1ζ3ζ543ζ554-2ζ5-13ζ533ζ52-2ζ5352-13ζ54+2ζ3ζ5235452+13ζ53+2ζ3ζ53535+132ζ52+2ζ32ζ532525+13ζ52+2ζ3ζ53525+1ζ3ζ533ζ5253-2ζ52-1    orthogonal lifted from C32⋊F5

Smallest permutation representation of C2×C32⋊F5
On 60 points
Generators in S60
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)
(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 47)(2 49 5 50)(3 46 4 48)(6 56 12 53)(7 58 11 51)(8 60 15 54)(9 57 14 52)(10 59 13 55)(16 31 17 33)(18 35 20 34)(19 32)(21 41 27 38)(22 43 26 36)(23 45 30 39)(24 42 29 37)(25 44 28 40)

G:=sub<Sym(60)| (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,47)(2,49,5,50)(3,46,4,48)(6,56,12,53)(7,58,11,51)(8,60,15,54)(9,57,14,52)(10,59,13,55)(16,31,17,33)(18,35,20,34)(19,32)(21,41,27,38)(22,43,26,36)(23,45,30,39)(24,42,29,37)(25,44,28,40)>;

G:=Group( (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60), (31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,47)(2,49,5,50)(3,46,4,48)(6,56,12,53)(7,58,11,51)(8,60,15,54)(9,57,14,52)(10,59,13,55)(16,31,17,33)(18,35,20,34)(19,32)(21,41,27,38)(22,43,26,36)(23,45,30,39)(24,42,29,37)(25,44,28,40) );

G=PermutationGroup([[(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60)], [(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,47),(2,49,5,50),(3,46,4,48),(6,56,12,53),(7,58,11,51),(8,60,15,54),(9,57,14,52),(10,59,13,55),(16,31,17,33),(18,35,20,34),(19,32),(21,41,27,38),(22,43,26,36),(23,45,30,39),(24,42,29,37),(25,44,28,40)]])

Matrix representation of C2×C32⋊F5 in GL5(𝔽61)

600000
01000
00100
00010
00001
,
10000
01000
00100
0003616
0001224
,
10000
0244500
0493600
0003616
0001224
,
10000
060100
0164400
0001743
000170
,
110000
00010
00001
017100
0174400

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,36,12,0,0,0,16,24],[1,0,0,0,0,0,24,49,0,0,0,45,36,0,0,0,0,0,36,12,0,0,0,16,24],[1,0,0,0,0,0,60,16,0,0,0,1,44,0,0,0,0,0,17,17,0,0,0,43,0],[11,0,0,0,0,0,0,0,17,17,0,0,0,1,44,0,1,0,0,0,0,0,1,0,0] >;

C2×C32⋊F5 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes F_5
% in TeX

G:=Group("C2xC3^2:F5");
// GroupNames label

G:=SmallGroup(360,150);
// by ID

G=gap.SmallGroup(360,150);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,3,-5,24,1347,111,1924,376,5189,2609]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*c*e^-1=b*c=c*b,b*d=d*b,e*b*e^-1=b^-1*c,c*d=d*c,e*d*e^-1=d^3>;
// generators/relations

Export

Subgroup lattice of C2×C32⋊F5 in TeX
Character table of C2×C32⋊F5 in TeX

׿
×
𝔽